Univalence criteria in multiply-connected domains

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Univalence Criteria in Multiply-connected Domains

Theorems due to Nehari and Ahlfors give sufficient conditions for the univalence of an analytic function in relation to the growth of its Schwarzian derivative. Nehari's theorem is for the unit disc and was generalized by Ahifors to any simply-connected domain bounded by a quasiconformal circle. In both cases the growth is measured in terms of the hyperbolic metric of the domain. In this paper ...

متن کامل

Stochastic Loewner evolution in multiply connected domains

We construct radial stochastic Loewner evolution in multiply connected domains, choosing the unit disk with concentric circular slits as a family of standard domains. The natural driving function or input is a diffusion on the associated moduli space. The diffusion stops when it reaches the boundary of the moduli space. We show that for this driving function the family of random growing compact...

متن کامل

Schwarz-christoffel Mapping of Multiply Connected Domains

A Schwarz-Christoffel mapping formula is established for polygonal domains of finite connectivity m ≥ 2 thereby extending the results of Christoffel (1867) and Schwarz (1869) for m = 1 and Komatu (1945), m = 2. A formula for f, the conformal map of the exterior of m bounded disks to the exterior of m bounded, disjoint polygons, is derived. The derivation characterizes the global preSchwarzian f...

متن کامل

On Radial Stochastic Loewner Evolution in Multiply Connected Domains

We discuss the extension of radial SLE to multiply connected planar domains. First, we extend Loewner’s theory of slit mappings to multiply connected domains by establishing the radial Komatu-Loewner equation, and show that a simple curve from the boundary to the bulk is encoded by a motion on moduli space and a motion on the boundary of the domain. Then, we show that the vector-field describin...

متن کامل

On Chordal and Bilateral Sle in Multiply Connected Domains

We discuss the possible candidates for conformally invariant random non-self-crossing curves which begin and end on the boundary of a multiply connected planar domain, and which satisfy a Markovian-type property. We consider both, the case when the curve connects a boundary component to itself (chordal), and the case when the curve connects two different boundary components (bilateral). We esta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1980

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1980-0574792-7